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Overview

• Introduction
• Boundary element techniques – method of moments

• Introduction to the MultiLevel Fast Multipole Algorithm (MLFMA)

• Calderón preconditioning*
• Broadband MLFMA
• Parallelization

• Examples from various domains

• Future challenges

* in cooperation with the
+ Dept. of Electrical and Computer Engineering, University of Michigan, USA
+ Antennas and EMC Lab (LACE), Electronics Department, 

Politecnico di Torino, Torino, Italy



3

EM applications and simulations
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Numerical techniques

FDTD 

(Finite 
Difference Time 

Domain)

FEM 

(Finite Elements)

BIE

(Boundary Integral 
Equation)
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Method of Moments

EM field

Linear set of equations with system matrix Z

 Direct methods = O(N³) CPU time and O(N²) memory

 Iterative solution reduces CPU time to O(NitN²) with Nit << N

=

N NN x N      

Z X = B

e.g. perfect conductor
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Iterative solution: example

• Iteratio
n = 0

• Error = 
1
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Iterative solution: example
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Iterative solution: example
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Iterative solution: example
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Iterative solution: example

• Iteratio
n = 0

• Error = 
1

Iteration = 1
Error = 0.62
Iteration = 21
Error = 0.25
Iteration = 46
Error = 0.1
Iteration = 396
Error = 10-3
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Fast techniques 

However, for large problems

 very large amounts of memory are needed

 CPU time becomes prohibitive

Solution: much improved iterative technique

 each iteration = a matrix-vector products Z*Xguess

 classical matrix-vector product is O(N²)

 much faster: Multilevel Fast Multipole Algorithm (MLFMA) 

 O(N log N) !! 



12

The physics of MLFMA

group
radiation pattern
(aggregation)

aggregration

translation
pattern

group
receive pattern
and disaggregation

multilevel

O(N log N)
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Problems and challenges

• keep the number of iterations small i.e. the iterative updates 

must converge as fast as possible to the actual solution 

preconditioning   P Z X = P B

• make it work over a large frequency range i.e. make it 

broadband: DC to mm-wave  non-directive stable plane wave 

MLFMA

• note: make it work for structures with small details!

• solve problems that are very large with respect to the 

wavelength  parallelize the MLFMA
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Calderón Preconditioning

• operator T() becomes unbounded at low frequencies (or fine mesh)
• operator K remains bounded at low frequencies
• Calderón identity: T2 + K2 = ¼
• operator T2 remains bounded at low frequencies

Integral equations for the surface current  on a PEC

n x ei = - n x esc or n x etot = 0       n: normal to the surface

n x esc = T[ jsurf , surf]

= - n x jA (jsurf) – n x surf)   with surf = -.jsurf/j

n x hi + n x hsc = jsurf

n x hsc = K[ jsurf ]

= n x  x A (jsurf)

EFIE

MFIE

PEC
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Calderón Preconditioning

• operator T() becomes unbounded at low frequencies (or fine mesh)
• operator K remains bounded at low frequencies
• Calderón identity: T2 + K2 = ¼
• operator T2 remains bounded at low frequencies

1/2

Relevant integral equations for the surface current  on a perfect conductor

tangential comp. 

of incident field
tangential comp. 

of incident field
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How to discretize T2 such that spectral properties remain?

change of basis

un x BC BC un x RWG RWG

 Preconditioning of EFIE:

Calderón Preconditioning

T[n x ei] = - T[n x esc] = T2[ jsurf , surf]
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Relevant basis functions (1)

RWG divRWG div--conformingconforming

BuffaBuffa--Christiansen quasi curlChristiansen quasi curl--conformingconforming

RWG curlRWG curl--conformingconforming
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Basis functions (2)

• Buffa-Christiaensen (BC) basis functions
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Calderón preconditioning

• Effect of Calderón preconditioning (CP)

CP EFIE
BC EFIE
RWG EFIE

RWG EFIE
CP EFIE

fixed number of mesh cells increasing number of smaller mesh cells
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The physics of MLFMA

group
radiation pattern

aggregration

translation
pattern

group
receive pattern
and disaggregation

multilevel
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broadband MLFMA

• plane-wave based MLFMA breaks down at low frequencies

• Does not incorporate evanescent field information only propagating 

plane waves 

• existing solution

• Use multipole expansion at low frequencies (dipole, quadrupole, ...)

• Non-diagonal translation matrices

• Difficult to combine with MLFMA

• new technique

Non-directive/analytical stable plane wave MLFMA (NSPWMLFMA)

• Diagonal translation matrices

• Easy to combine with MLFMA
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broadband MLFMA

• plane-wave based MLFMA breaks down at low frequencies

• Does not incorporate evanescent field information only 

propagating plane waves 

• new technique

Non-directive/analytical stable plane wave MLFMA 

(NSPWMLFMA)
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Low frequency breakdown

L =2.55 
L

L =0.64 
L =0.96 



Plane-wave based MLFMA breaks down at low frequencies

Does not incorporate evanescent field information

only propagating plane waves

New technique

Non-directive/analytical stable plane wave MLFMA (NSPWMLFMA)
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Complex plane radiation pattern

L =2.55 
L

L =0.64 
L =0.96 



make  complex:  + j
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Parallel MLFMA

classical O(N²)

N < 10 000 unknowns

MLFMA O(N log N)

N < 1 000 000

Parallel MLFMA O(N log N)

N > 100 000 000

1  10  100 
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Parallelization of MLFMA

• Previous efforts:

• Simulation of large single 3D objects

• Allows good load balancing

• Synchronous algorithms (either communication or same type of 
calculation)

• Our efforts:

• Simulation of complex geometries consisting of multiple objects

• Difficult to obtain good load balancing

• Asynchronous algorithm
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Parallelization of MLFMA

• Previous efforts:

• Simulation of large single 3D objects

• Allows good load balancing

• Synchronous algorithms (either communication or same type of 
calculation)

• Fast interconnection environments (Infiniband)

• Our efforts:

• Simulation of complex geometries consisting of multiple objects

• Difficult to obtain good load balancing

• Asynchronous algorithm

• Focus both on parallel efficiency and parallel scalability using 
hierarchical partitioning
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Parallel Efficiency Infiniband
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Parallel Scalability
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Some examples

• proof of accuracy: analytical example – scattering by a cylinder

• scattering by an Airbus and by a “Thunderbird”

• indoor propagation

• shielding

• artificial media

• lens systems

• Cassegrain antenna
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Is such a method “really” accurate
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Broadband 3D scattering

• Airbus A 380

N = 500.000

80 m

127 

1.27  0.0127 

N = 117.000
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Broadband scattering – cont.

• LF and HF Thunderbird 2 (TB)

Length TB: 0.014 
N = 101.466
21 iterations
Accuracy: 10-3

20s per iteration
12 AMD Opteron 270 processors

Length TB: 15 
N = 1.025.559, 1.2GByte
28 iterations
Accuracy: 10-3

28s per iteration
20 AMD Opteron 270 processors
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Indoor propagation problem (2D)

Library 20m x 16m
• 2 sources @ 60 GHz i.e. wavelength 0.5cm

• Detail 1

• Detail 2
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Indoor propagation problem
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Personal Computer

Geometry of the PC without internal objects
dimensions: 44cm x 42cm x 22cm

apertures
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EMC Shielding 

hard disks
(PEC)

diskette

CD-DVD
power unit

cube 2cm side
r = 2
r = 2 – 2j
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Shielding cont.

@ 250MHz
● 3.2 GByte 
● 16 processors
● 526 s setup time
● 251 iterations
● 0.5 s per iteration
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Frequency (from 100 MHz to 2.5 GHz)
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Finite conductivity wall

• spherical copper shell of thickness d and inner radius R=1m
• frequency: 47.7 MHz (k = 1,  = 1/2)
• skin depth m

dB

field penetration
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Artificial medium

focal 
point

r,max = 12

■ Lüneburg lens (radius = 8 =80 cm) 
+ inhomogenious refractive index 
+ r = (2 – R/Rsphere) r,max 

modelled by identical spheres (r = 12)
but denser near the centre 

3 test geometries
• Rss = 2.4cm (669 small spheres)
• Rss = 1.2cm (5362 small spheres)
• Rss = 0.6cm (42899 small spheres)
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Lüneburg lens

■ 669 spheres, 2 007 currents note:
+ the small spheres are indentical 

but their centre is not necessarily
in the plane of the cross-section

+ each small sphere is modelled by 
a single equivalent electric current
i.e. 3 scalar unknowns

+ all the interactions between the 
spheres are taken into account
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Lüneburg lens – cont.

■ 5362 spheres, 16 086 currents
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Lüneburg lens – cont.

■ 42899 spheres, 128 697 currents
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Lens system
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Coated lens

r = 4

r = 2
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Cassegrain Antenna

ESA DSA2, 35m Cerebros, Spain

32 GHz
4000  in diametre
250 000 unknowns
7 minutes total solve time
16 processors 
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Cassegrain Antenna – cont.
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Future challenges

• hybridization with Finite Elements

• complex interconnect problems in layered media

• powerful time-domain FMM

• combination with ray theories

• .............
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Questions?

Thank you for your attention!


