

Recent progress in fast methods for the solution of Maxwell's equations

XXVI Riunione Annuale dei Ricercatori di Elettrotecnica

Daniël De Zutter, Ignace Bogaert, Kristof Cools, Jan Fostier and Joris Peeters

Department of Information Technology Electromagnetics Group Ghent University, Belgium (daniel.dezutter@ugent.be)

- Introduction
- Boundary element techniques method of moments
- Introduction to the MultiLevel Fast Multipole Algorithm (MLFMA)
- Calderón preconditioning*
- Broadband MLFMA
- Parallelization
- Examples from various domains
- Future challenges
- * in cooperation with the
 - + Dept. of Electrical and Computer Engineering, University of Michigan, USA
 - + Antennas and EMC Lab (LACE), Electronics Department, Politecnico di Torino, Torino, Italy

EM applications and simulations

FDTD (Finite Difference Time Domain)

(Finite Elements)

BIE

(Boundary Integral Equation)

Linear set of equations with system matrix Z

- Direct methods = O(N³) CPU time and O(N²) memory
- Iterative solution reduces CPU time to O(N_{it}N²) with N_{it} << N</p>

Iterative solution: example

Iterative solution: example

Iterative solution: example

Fast techniques

However, for large problems

- very large amounts of memory are needed
- CPU time becomes prohibitive

Solution: much improved iterative technique

- each iteration = a matrix-vector products Z*X_{quess}
- classical matrix-vector product is O(N²)
- much faster: Multilevel Fast Multipole Algorithm (MLFMA)

The physics of MLFMA

- keep the number of iterations small i.e. the iterative updates must converge as fast as possible to the actual solution → preconditioning PZX = PB
- make it work over a large frequency range i.e. make it broadband: DC to mm-wave → non-directive stable plane wave MLFMA
- *note:* make it work for structures with small details!

Ш

 solve problems that are very large with respect to the wavelength → parallelize the MLFMA

- operator T(ω) becomes unbounded at low frequencies (or fine mesh)
- operator K remains bounded at low frequencies
- Calderón identity: T² + K² = ¼
- operator T² remains bounded at low frequencies

Relevant integral equations for the surface current on a perfect conductor

$$\begin{split} \hat{n} \times e^{i} &= -\left[T\left[j\right]\left(r\right)\right] \\ &= -\frac{1}{j\omega\epsilon} \hat{n} \times \int_{\Gamma} \nabla \frac{e^{-jkR}}{4\pi R} \nabla' \cdot j\left(r'\right) dS' \\ \text{tangential comp.} \\ \text{of incident field} &+ \mathbf{1/2} \ j\omega\mu \hat{n} \times \int_{\Gamma} \frac{e^{-jkR}}{4\pi R} j\left(r'\right) dS', \\ \hat{n} \times h^{i}\left(r\right) &= \left\{\frac{1}{2} + K\right\} [j]\left(r\right) \\ &= \frac{1}{2} j\left(r\right) - \hat{n} \times \frac{1}{4\pi} \int_{\Gamma} \nabla \frac{e^{-jkR}}{R} j\left(r'\right) dS' \end{split}$$

- operator $T(\omega)$ becomes unbounded at low frequencies (or fine mesh) •
- operator K remains bounded at low frequencies ٠
- Calderón identity: $T^2 + K^2 = \frac{1}{4}$ ٠

ШШ

IVERSITEIT GENT

operator T² remains bounded at low frequencies •

comp.

• Preconditioning of EFIE: $T[n \ge e_i] = -T[n \ge e_{sc}] = T^2[j_{surf}, \rho_{surf}]$ How to discretize T² such that spectral properties remain?

Buffa-Christiansen quasi curl-conforming

• Buffa-Christiaensen (BC) basis functions

• Effect of Calderón preconditioning (CP)

fixed number of mesh cells

increasing number of smaller mesh cells

The physics of MLFMA

- plane-wave based MLFMA breaks down at low frequencies
 - Does not incorporate evanescent field information only propagating plane waves
- existing solution
 - Use multipole expansion at low frequencies (dipole, quadrupole, ...)
 - Non-diagonal translation matrices
 - Difficult to combine with MLFMA
- new technique

Non-directive/analytical stable plane wave MLFMA (NSPWMLFMA)

- Diagonal translation matrices
- Easy to combine with MLFMA

- plane-wave based MLFMA breaks down at low frequencies
 - Does not incorporate evanescent field information only propagating plane waves
- new technique

Non-directive/analytical stable plane wave MLFMA (NSPWMLFMA)

Plane-wave based MLFMA breaks down at low frequencies

Does not incorporate evanescent field information only propagating plane waves

New technique

Non-directive/analytical stable plane wave MLFMA (NSPWMLFMA)

Complex plane radiation pattern

Parallel MLFMA

classical O(N²)

N < 10 000 unknowns

MLFMA O(N log N)

N < 1 000 000

Parallel MLFMA O(N log N)

N > 100 000 000

- Previous efforts:
 - Simulation of large single 3D objects
 - Allows good load balancing
 - Synchronous algorithms (either communication or same type of calculation)
- Our efforts:
 - Simulation of complex geometries consisting of multiple objects
 - Difficult to obtain good load balancing
 - Asynchronous algorithm

ШП

IVERSITEIT GENT

- Simulation of large single 3D objects
- Allows good load balancing
- Synchronous algorithms (either communication or same type of calculation)
- Fast interconnection environments (Infiniband)
- Our efforts:
 - Simulation of complex geometries consisting of multiple objects
 - Difficult to obtain good load balancing
 - Asynchronous algorithm
 - Focus both on parallel efficiency and parallel scalability using hierarchical partitioning

Parallel Scalability

Some examples

- proof of accuracy: analytical example scattering by a cylinder
- scattering by an Airbus and by a "Thunderbird"
- indoor propagation
- shielding
- artificial media
- lens systems
- Cassegrain antenna

Broadband 3D scattering

Library 20m x 16m

• 2 sources @ 60 GHz i.e. wavelength 0.5cm

Detail 1

• Detail 2

NTEC

Indoor propagation problem

Personal Computer

Geometry of the PC without internal objects dimensions: 44cm x 42cm x 22cm

EMC Shielding

Shielding cont.

Frequency (from 100 MHz to 2.5 GHz)

@ 250MHz

- 3.2 GByte
- 16 processors
- 526 s setup time
- 251 iterations
- 0.5 s per iteration

- spherical copper shell of thickness d and inner radius R=1m
- frequency: 47.7 MHz (k = 1, λ = 1/2 π)

 ϵ_0

R

• skin depth $\delta = 9.46 \mu m$

 ϵ_0

 E^{in}

k

Artificial medium

Lüneburg lens (radius = 8\lambda = 80 cm)

+ inhomogenious refractive index

+ $\varepsilon_r = (2 - R/R_{sphere}) \varepsilon_{r,max}$ modelled by identical spheres ($\varepsilon_r = 12$) but denser near the centre

3 test geometries

IVERSITEIT GENT

- R_{ss} = 2.4cm (669 small spheres)
- R_{ss} = 1.2cm (5362 small spheres)
- R_{ss} = 0.6cm (42899 small spheres)

focal ₍ point

Lüneburg lens

■ 669 spheres, 2 007 currents

note:

- + the small spheres are indentical but their centre is not necessarily in the plane of the cross-section
- + each small sphere is modelled by a single equivalent electric current
 i.e. 3 scalar unknowns
- + all the interactions between the spheres are taken into account

5362 spheres, 16 086 currents

42899 spheres, 128 697 currents

Lens system

Coated lens

Cassegrain Antenna – cont.

Future challenges

- hybridization with Finite Elements
- complex interconnect problems in layered media
- powerful time-domain FMM
- combination with ray theories
- •

Thank you for your attention!

Questions?

