Recent progress in fast methods for the solution of Maxwell's equations

XXVI Riunione Annuale dei Ricercatori di Elettrotecnica

Daniël De Zutter, Ignace Bogaert, Kristof Cools, Jan Fostier and Joris Peeters

Department of Information Technology
Electromagnetics Group
Ghent University, Belgium
(daniel.dezutter@ugent.be)

Overview

- Introduction
- Boundary element techniques - method of moments
- Introduction to the MultiLevel Fast Multipole Algorithm (MLFMA)
- Calderón preconditioning*
- Broadband MLFMA
- Parallelization
- Examples from various domains
- Future challenges
* in cooperation with the
+ Dept. of Electrical and Computer Engineering, University of Michigan, USA
+ Antennas and EMC Lab (LACE), Electronics Department, Politecnico di Torino, Torino, Italy

Numerical techniques

FDTD
(Finite
Difference Time
Domain)

FEM
(Finite Elements)

BIE

(Boundary Integral Equation)

$\xrightarrow{\text { EM field }}$

Linear set of equations with system matrix Z

- Direct methods $=\mathrm{O}\left(\mathrm{N}^{3}\right)$ CPU time and $\mathrm{O}\left(\mathrm{N}^{2}\right)$ memory

■ Iterative solution reduces CPU time to $\mathrm{O}\left(\mathrm{N}_{\mathrm{it}} \mathrm{N}^{2}\right)$ with $\mathrm{N}_{\mathrm{it}} \ll \mathrm{N}$

Iteration＝ 1
Error $=0.62$

Iteration = 21

Iteration＝ 46

Iteration = 396

However, for large problems

- very large amounts of memory are needed
- CPU time becomes prohibitive

Solution: much improved iterative technique

- each iteration = a matrix-vector products $Z^{*} X_{\text {guess }}$
- classical matrix-vector product is $\mathrm{O}\left(\mathrm{N}^{2}\right)$
- much faster: Multilevel Fast Multipole Algorithm (MLFMA)

$$
\Rightarrow \mathrm{O}(\mathrm{~N} \log \mathrm{~N})!!
$$

group radiation pattern
$\mathrm{O}(\mathrm{N} \log \mathrm{N})$ (aggregation)

multilevel

- keep the number of iterations small i.e. the iterative updates must converge as fast as possible to the actual solution \rightarrow preconditioning $P \mathbf{Z X}=\mathrm{P}$ B
- make it work over a large frequency range i.e. make it broadband: DC to mm-wave \rightarrow non-directive stable plane wave MLFMA
- note: make it work for structures with small details!
- solve problems that are very large with respect to the wavelength \rightarrow parallelize the MLFMA

Integral equations for the surface current on a PEC

$$
\begin{aligned}
& n \times e_{i}=-n \times e_{s c} \text { or } n \times e_{\text {tot }}=0 \quad n \text { : normal to the surface } \\
& \begin{aligned}
n \times e_{s c} & =T\left[j_{\text {surf }}, \rho_{\text {surf }}\right] \\
& =-n \times j \omega A\left(j_{\text {surf }}\right)-n \times \nabla \phi\left(\rho_{\text {surf }}\right) \quad \text { with } \rho_{\text {surf }}=-\nabla \cdot j_{\text {surf }} / j \omega \\
n \times h_{i} & +n \times h_{s c}=j_{\text {surf }} \\
n \times h_{s c} & =K\left[j_{\text {surf }}\right] \\
& =n \times \nabla \times A\left(j_{\text {surf }}\right)
\end{aligned}
\end{aligned}
$$

- operator $T(\omega)$ becomes unbounded at low frequencies (or fine mesh)
- operator K remains bounded at low frequencies
- Calderón identity: $\mathbf{T}^{2}+\mathbf{K}^{2}=1 / 4$
- operator T^{2} remains bounded at low frequencies

Relevant integral equations for the surface current on a perfect conductor

$$
\begin{array}{rlr}
\hat{n} \times e^{i}= & -T[j](r) \\
= & -\frac{1}{j \omega \epsilon} \hat{n} \times \int_{\Gamma} \nabla \frac{e^{-j k R}}{4 \pi R} \nabla^{\prime} \cdot j\left(r^{\prime}\right) d S^{\prime} \\
& +\mathbf{1} \mathbf{2} j \omega \mu \hat{n} \times \int_{\Gamma} \frac{e^{-j k R}}{4 \pi R} j\left(r^{\prime}\right) d S^{\prime}, & \begin{array}{r}
\text { tangential comp. } \\
\text { of incident field } \\
\text { of incident field }
\end{array} \\
\hat{n} \times h^{i}(r)= & \left\{\frac{1}{2}+K\right\}[j](r) & \\
= & \frac{1}{2} j(r)-\hat{n} \times \frac{1}{4 \pi} \int_{\Gamma} \nabla \frac{e^{-j k R}}{R} j\left(r^{\prime}\right) d S^{\prime}
\end{array}
$$

- operator $T(\omega)$ becomes unbounded at low frequencies (or fine mesh)
- operator K remains bounded at low frequencies
- Calderón identity: $\mathbf{T}^{2}+\mathbf{K}^{2}=1 / 4$
- operator T^{2} remains bounded at low frequencies

Calderón Preconditioning

- Preconditioning of EFIE: $T\left[n \times e_{i}\right]=-T\left[n \times e_{\text {sc }}\right]=T^{2}\left[j_{\text {surf }}, \rho_{\text {surf }}\right]$ $\mathrm{H}_{\text {How to discretize } \mathrm{T}^{2} \text { such that spectral properties remain? }}$

RWG div-conforming

Buffa-Christiansen quasi curl-conforming

- Buffa-Christiaensen (BC) basis functions

- Effect of Calderón preconditioning (CP)

fixed number of mesh cells

increasing number of smaller mesh cells

group
radiation pattern

multilevel
- plane-wave based MLFMA breaks down at low frequencies
- Does not incorporate evanescent field information only propagating plane waves
- existing solution
- Use multipole expansion at low frequencies (dipole, quadrupole, ...)
- Non-diagonal translation matrices
- Difficult to combine with MLFMA
- new technique

Non-directive/analytical stable plane wave MLFMA (NSPWMLFMA)

- Diagonal translation matrices
- Easy to combine with MLFMA
- plane-wave based MLFMA breaks down at low frequencies
- Does not incorporate evanescent field information only propagating plane waves
- new technique

Non-directive/analytical stable plane wave MLFMA (NSPWMLFMA)

L

Plane-wave based MLFMA breaks down at low frequencies
\Rightarrow Does not incorporate evanescent field information only propagating plane waves

New technique
Non-directive/analytical stable plane wave MLFMA (NSPWMLFMA)

L

\Longleftrightarrow make ϕ complex: $\phi+\mathrm{j} \chi$

classical $\mathrm{O}\left(\mathrm{N}^{2}\right)$
N < 10000 unknowns

MLFMA O(N $\log \mathrm{N})$
N < 1000000

Parallel MLFMA O(N log N)

$$
\text { N > } 100000000
$$

100λ

- Previous efforts:
- Simulation of large single 3D objects
- Allows good load balancing
- Synchronous algorithms (either communication or same type of calculation)
- Our efforts:
- Simulation of complex geometries consisting of multiple objects
- Difficult to obtain good load balancing
- Asynchronous algorithm
- Previous efforts:
- Simulation of large single 3D objects
- Allows good load balancing
- Synchronous algorithms (either communication or same type of calculation)
- Fast interconnection environments (Infiniband)
- Our efforts:
- Simulation of complex geometries consisting of multiple objects
- Difficult to obtain good load balancing
- Asynchronous algorithm
- Focus both on parallel efficiency and parallel scalability using hierarchical partitioning

Parallel Efficiency Infiniband

Nero2d measured efficiency

- proof of accuracy: analytical example - scattering by a cylinder
- scattering by an Airbus and by a "Thunderbird"
- indoor propagation
- shielding
- artificial media
- lens systems
- Cassegrain antenna

Broadband scattering - cont.

- LF and HF Thunderbird 2 (TB)

Length TB: 0.014λ
$\mathrm{N}=101.466$
21 iterations
Accuracy: 10-3
20s per iteration
12 AMD Opteron 270 processors

Length TB: 15λ
$\mathrm{N}=1.025 .559,1.2 \mathrm{GByte}$
28 iterations
Accuracy: 10-3
28s per iteration
20 AMD Opteron 270 processors

Library 20m x 16m

- 2 sources @ 60 GHz i.e. wavelength 0.5 cm

- Detail 1

- Detail 2

Geometry of the PC without internal objects dimensions: $44 \mathrm{~cm} \times 42 \mathrm{~cm} \times 22 \mathrm{~cm}$

Shielding cont.

Frequency (from 100 MHz to 2.5 GHz)

@ 250MHz

- 3.2 GByte
- 16 processors
- 526 s setup time
- 251 iterations
- 0.5 s per iteration
- spherical copper shell of thickness d and inner radius $R=1 m$
- frequency: $47.7 \mathrm{MHz}(k=1, \lambda=1 / 2 \pi)$
- \quad skin depth $\delta=9.46 \mu \mathrm{~m}$

Artificial medium

- Lüneburg lens (radius $=8 \lambda=80 \mathrm{~cm}$)
+ inhomogenious refractive index
$+\varepsilon_{\mathrm{r}}=\left(2-\mathrm{R} / \mathrm{R}_{\text {sphere }}\right) \varepsilon_{\mathrm{r}, \text { max }}$
modelled by identical spheres ($\varepsilon_{\mathrm{r}}=12$) but denser near the centre
- 3 test geometries
- $\mathrm{R}_{\mathrm{ss}}=2.4 \mathrm{~cm}$ (669 small spheres)
- $\mathrm{R}_{\mathrm{ss}}=1.2 \mathrm{~cm}$ (5362 small spheres)
- $R_{\mathrm{ss}}=0.6 \mathrm{~cm}$ (42899 small spheres)

Lüneburg lens

■ 669 spheres, 2007 currents

note:

+ the small spheres are indentical but their centre is not necessarily in the plane of the cross-section
+ each small sphere is modelled by a single equivalent electric current i.e. 3 scalar unknowns
+ all the interactions between the spheres are taken into account

■ 5362 spheres, 16086 currents

- 42899 spheres, 128697 currents

Cassegrain Antenna

32 GHz

4000λ in diametre 250000 unknowns
7 minutes total solve time 16 processors

Future challenges

- hybridization with Finite Elements
- complex interconnect problems in layered media
- powerful time-domain FMM
- combination with ray theories
.............

Thank you for your attention!

Questions?

